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Relative Trajectories of Objects Ejected
from a Near Satellite

GiLBerT C. KNoLLMAN* AND BERRY O. Pyront

Georgia Institute of Technology, Atlanta, Ga.

An unpowered, unconstrained object is considered to be ejected impulsively with low speed
from a satellite in circular orbit. The ejection velocity vector has an arbitrary direction
within the satellite’s orbital plane. Equations are developed describing the object’s motion
relative to a frame of reference centered on the satellite for the general case that atmospheric
drag acts on the object. Typical trajectories (obtained on an analog computer) are illustrated
by plots applying to two objects having different values of ballistic drag parameter and to both
low-speed ejection and zero-speed release. The effects upon trajectory shape of varying
altitude, ejection speed and angle, and drag parameter are indicated, and particular aspects
of the trajectories are discussed. In addition, the simplified case of no drag is examined
analytically. Approximate equations are developed for the trajectory of the object in that
case, the shape of the trajectory with various ejection angles is discussed, and orbital param-
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eters are derived.

LTHOUGH the orbital motion of individual satellites
has been studied extensively, both with and without the
effect of atmospheric drag force included, less attention seems
to have been given to the motion of orbital bodies relative to
one another. In particular, the authors have not found dis-
cussed in the literature certain noteworthy features of the
behavior of an object ejected from an orbiting satellite, and
yet the separation of bodies with small relative speed occurs
in a variety of orbital operations. Satellite instrument cap-
sules commonly are separated from their rocket carriers by
means of small impulsive forces. Casings and other no-
longer-wanted parts are thrust away. Two or more satellites
may be placed in orbit by a single carrier and then separated
from one another. Furthermore, one may envision that, in
future operations around manned satellite stations or vehicles,
space-suited men, tools, and other objects will become sepa-
rated, accidentally or intentionally, from the “parent’” craft.
These and other instances suggest that the motion of orbital
bodies, subsequent to their separation with modest relative
speed, is of interest. In addition, the relative motion of
orbiting objects is of importance in problems relating to
satellite rendezvous and intercept.1 ™1
This paper is concerned with the behavior of an un-
powered object ejected from a satellite in circular orbit about
the earth and thereafter acted upon only by the earth’s
gravitational field and atmospheric drag force. For con-
venience, only ejection within the plane of the satellite orbit
is examined. The object is assumed to be ejected impulsively
with a speed relative to the satellite which is small compared
with the satellite’s orbital speed; the ejection velocity vector
makes an arbitrary angle with the orbital velocity vector. An
ideal satellite is'selected as the origin of the frame of reference
for studying the object’s motion; this ideal satellite under-
goes no drag force and no reaction force to the impulsive kick
that ejects the body.* Spherical symmetry is assumed for
the earth’s gravitational field and for its atmosphere. Minor
effects upon the body’s behavior, such as interaction with the
earth’s magnetic field and with the gravitational fields of
bodies other than the earth, are neglected.
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¥ The stipulation of no reaction force may be taken to imply
that the body’s mass is negligibly small compared with that of
the satellite.

Geometrical Problem Model

Figure 1 depicts the interrelationships: among the three
two-dimensional Cartesian coordinate systems to be used in
describing the problem. The 21, y; system is nonrotating and
has its origin at the earth’s center, whereas x,, 7. has the
same origin but rotates with the constant angular speed w¢ of
the ideal, no-drag satellite. The 3,y; system has its origin in
the ideal satellite with the ;3 axis along the satellite’s velocity
vector of magnitude V¢ and the y; axis forming an angle 8
with the y; axis.

Equations of Relative Motion

The object is ejected at an angle ¢ with respect to the z3
axis and with a speed V' relative to the satellite; the satellite
is assumed to be in a circular orbit of radius Re. After ejec-
tion, the object moves in a quasi-elliptic orbit of decreasing
eccentricity which eventually degenerates into an approxi-
mately circular orbit and thereafter into a spiral tightening
about the earth. This degeneration is brought about by the
continuous dissipation of energy caused by atmospheric drag.
With respect to the satellite-fixed coordinate frame, the
launched object at any time has position x3,ys.

The authors are primarily concerned with the ejected
object’s motion relative to the zs,y; coordinate system, that is,
with the motion as seen by an observer riding on a satellite
with his feet always oriented toward and his head away from
theseenter of the earth. However, occasional mention is made
of the object’s motion relative to the geocentric system ;1.
In the interest of clarity, then, the term “trajectory’ is re-
strieted to mean the object’s path relative to the 3,75 frame,
and the term ‘“‘orbit’”” is used only in reference to its motion
relative to z;,1:.

Equations of motion for the ejected object relative to the
nonrotating inertial frame shown in Fig. 1 can be written in
the well-known form

@ + (u/r¥a + Bpiy(@n? + pHY2 = 0 1
i+ (u/m®)y + Bpjn(d® + ;:HV2 =0 2

in which u is the product of the universal gravitational con-
stant times the sum of object mass and earth mass, p is the
air density at the position i, 11, and r; is the instantaneous
radial distance of the ejected body from the center of the
earth given by

r = (;? 4 y:H)1? (3)
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The ballistic drag parameter B is defined as
B = ACp/2m 4)

where m and A are, respectively, the mass and effective drag
area$ of the ejected object, and C represents the (dimension-
less) aerodynamic drag coeflicient.

Under the orthogonal transformation in 8 appropriate for
a rotation of axes, Eqs. (1) and (2) transform to describe the
motion relative to the m,,y. frame. Differential equations
relative to the xs,y; frame are finally obtained by substituting

y: = ¥z + Re (8)

To reduce the result to a form more suitable for solution by
analog-computational methods, one makes the change of
variable 8 = wct and introduces the relationship p = w¢?Re3,
which applies for circular orbits.! The satellite angular
speed in orbit is given by

we =8 = V¢/Re (6)

Designating by primes derivatives with respect to B3, one
obtains

xs” + 2ys" — a5[1l — (Re/re)?] + (BpVs/we) X
@' +ys+ Re) =0 (7)

ys” — 2z’ — (ys + RC) [1 - (Rc/r3)2] +
(BpVs/we)(ys' — x) = @ (8)

wherein the object speed V; with respect to the xs,y; coordi-
nate system is

Ty = X3

Vi = ocl(zs’ + ys + Be)? + (s’ — 25)?]'/2 9).

and
ry = |22 + (s + Ro)?]Y? (10)

For relative separations between object and satellite which
are small compared with the radius of the orbit (which, in
turn, implies ejection speeds small compared to the orbital
speed), Eq. (10) is approximated by two terms in its bi-
nomial expansion. Introducing the result into (7) and (8)
yields

xs" + 2y’ — $(xs/Re?) (s + ys? + 2y5Re) +
(BpVs/we) (2" + ys + Re) = 0 (11)

ys" — 223" — 2[(ys + Re)/Rc?](2s® 4 ya® + 2y3Re) +
(BpVi/we)(ys' — x3) = 0 (12)

These equatiens provide the desired description of the ejected
object’s motion relative to the z3,; frame eentered on the ideal
satellite, with the effect of air drag included. Initial condi-
tions imposed on (11) and (12) are

13(0) = 5:(0) = 0 (13)
z3'(0) = nRc cose (14)
y3'(0) = nR¢ sing (15)
in which
n = Ve/Ve (16)

is the ratio of relative ejection speed to satellite orbital speed,
and ¢ is the angle of ejection with respect to the satellite’s
velocity vector (i.e., the z; axis).

§ The effective drag area of an object depends upon its geo-
metrical shape as well as its orientation relative to the air stream.
A nonconecave object randomly tumbling throughout its motion
in the atmosphere has an effective drag area that is one fourth its
total surface area.

I Although the quantity x in Eqs. (1) and (2) refers to the
ejected object, it may be regarded as also applying to the satellite
if both the satellite mass and the mass of the ejected object are
small in comparison with the earth’s mass.
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Fig. 1 Rectangular coordinate systems

Special Case: Zero Drag

As will be shown later, the relative trajectory followed by an
ejected body in the atmosphere can be regarded in first ap-
proximation as comprising a superposition of the forward dis-
placement occasioned by air drag upon the path that would
otherwise prevail. For.this reason, one first studies the ejec-
tion problem with atmospheric drag effects suppressed, which
may be accomplished by taking B = 0. This simplified case
provides an insight into the more complex case where drag
is included by illustrating several characteristic features that
the latter also displays.

This special case of zero drag approximates the more com-
plex case at great altitudes. Moreover, zero drag trajectories
closely approximate for a considerable time those that prevail
in the event that the satellite, as well as the object, undergoes
drag and that both have the same value of drag parameter and
therefore experience nearly the same drag acceleration so long
as they are at nearly the same altitude.

In the absence of aerodynamic drag, an object ejected with
small relative speed from a satellite in circular orbit will there-
after follow an elliptic orbit of very small eccentricity having
a focus at the earth’s center; this orbit lies everywhere close
to the orbit of the satellite. In the circumstance that satellite
and ejected body have unequal periods of revolution about
the earth, the one having the shorter period will creep ahead
of the other in orbital position, and this steady advancement
soon will produce substantial separations between the bodies.#
On the other hand, for the partieular case that satellite and
ejected object have equal periods of revolution, they will con-
tinue indéfinitely (under the stated assumptions) to orbit the
earth “in step.” After each revolution, the ejected body will
return to the satellite’s position with its initial relative velocity
and hence will again and again retrace the same ‘“closed”
trajectory in the x5 coordinate system.

Elliptic Orbit Parameters

The ejected object’s elliptic orbit with respect to the xy,1:
reference frame is identified completely in the present problem
by determining three orbit parameters: the semimalor axis
length a, eccentricity ¢, and angle 8 between the lines joining
the earth’s center with the point of ejection and with the
perigee. (In the case of nonzero drag, the forementioned
parameters apply approximately to the instantaneous ellipti-
cal orbit of the ejected body at the moment of launch.)

At the instant of launch, the ejected object’s velocity with
respect to the z,y, coordinate system is the resultant of the

# For this special case of zero drag and under the idealized
conditions of this analysis, the satellite and ejected body once
again will be in proximity after some great number of revolutions,
but the authors are not concerned here with such long time
periods.
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velocities having magnitudes Vz and V¢ (see Fig. 1). Desig-
nating the object’s actual speed at launch by V5 and using
the law of cosines, one finds that

(Va/Ve)? =14 92 4 29 cose (n

Sinee V7 is the speed of a body in an elliptic orbit and at a
distance B¢ from the origin of a coordinate system centered
at a focus, the following relation ean be written:

Vi? = (u/Rc)(2 — Re/a) (18)

which applies for any mass moving solely under the influence
of an inverse-square-law central-force field. With the satel-
lite speed V¢ given by Ve? = u/Re, Bq. (18) becomes (Vz/Ve)?
= 2 — Re/a. Introducing this result into Eq. (17) and then
solving for the semimajor axis length, one obtains

a = Re[l — 7% — 29 cosp] 2 19)

To determine the eccentricity € of the elliptic orbit, one
notes that at the instant of ejection the object’s tangential
component of actual speed, Vz cose + Ve, must equal that
appropriate for an object in an elliptic orbit and at a radial
distance Rc¢ from the origin of a focus-centered coordinate
system. Hence,

V(1 + 7 cose)? = ua(l — €)/R¢? (20)

‘When Eq. (20) is solved for € and Eq. (19) is substituted for a
the result is

e = 7[n? cos?e + 29(1 4 cos?e) cose + (1 + 3 cos?e)]1/?
21)

The third orbital parameter ¢ is found by recalling the polar
equation of an ellipse relative to a coordinate system with
center at the focus and with axes coinciding with those of the
ellipse. At launch time, the coordinates of the ejected object
in this system are R¢, 6, so that one can write

_all — €Y
Be = 1 + e cosf (22)
Equation (20) now is introduced into (22) and the result
solved for 8 in the form

cost = (n/€)(2 4+ 7 cose) cose (23)

Equations (21) and (23) reveal that an ejection angle of 0°
places the perigee of the object’s elliptic orbit at the launch
position # = 0° whereas a backward launch (o = 180 °)
places the apogee at the launch point § = 180°. “Upward”
and “downward” ejections result in ellipses whose major axes
are orthogonal with the line joining the earth’s center and the
ejection point.

Critical Ejection Angles

A body ejected from a satellite will have the same period of
revolution about the earth as does the parent vehicle under
the condition that the body’s total energy, and hence its total
speed, is unchanged by ejection.** The condition is met when
the ejection velocity vector makes certain angles, ==¢., with
the satellite orbital velocity vector. These “critical” angles
may be found by equating the period for the elliptic orbit,
given by Pr = 2m(a3/u)''?, and the period for the circular
orbit, given by Pe = 2w (R¢%/u)/?%, and then introducing Eq.
(19) to obtain

¢ = cosY—19/2) (24)

Since 7 is assumed to be small compared with unity, the criti-
** This fundamental condition to produce a closed relative
trajectory applies whether the satellite is in circular or elliptical

orbit and whether the ejection velocity vector lies within or
without the satellite orbital plane.
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Fig. 2 Illustration of critical angles and elliptical relative
trajectories

cal ejection angles that result in closed relative trajectories
are seen to be slightly larger than 90° and slightly less than
270°.. More generally, an object ejected with speed Vg will
follow, in the absence of atmospheric drag, a closed relative
trajectory if the ejection velocity vector coincides with any
element of a conical surface of semi-angle 7 — ¢, This
conical surface has its axis aligned with the satellite orbital
velocity vector and its apex pointed in the direction of that
vector.

If Eq. (24) is inserted in Eq. (19), it is found that at critical
ejection the semimajor axis of the elliptic orbit is equal in
length to the radius of the satellite’s circular orbit.

Relative Trajectories

When ejected at the “upper’ critical angle (near 90°), an
object follows a relative trajectory having an elliptical shape
and lying behind the satellite (trajectory 1 in Fig. 2), whereas
ejection at the “lower” critical angle results in an elliptical
trajectory that is similar but that lies forward of the satellite
rather than behind it (trajectory 2 in Fig. 2). For launch
angles in the range —¢. < ¢ < ¢., the period of the ejected
body in its elliptic orbit is longer than that of the satellite in
circular orbit, and the ejected body falls “behind” the satel-
lite; for launch angles outside this range, the ejected body’s
period is shorter, and it creeps “ahead.” With critical-angle
ejection, one loop of the trajectory is completed in a time
exactly equal to one period of revolution of the satellite (ox
the object) about the earth; with ejection at any other angle,
one loop is completed in approximately one satellite period.

Launched directly forward, i.e., at an angle ¢ = 0°, the
object follows a trajectory that takes it looping back along
the satellite orbit. Over short sections this trajectory closely
approximates a prolate cycloid but is better described as re-
sembling a prolate epicycloid. In contrast, a backward ejec-
tion at an angle ¢ = 180° yields a trajectory that lies forward
of the satellite and that resembles a prolate hypocyecloid. If
the ejection angle is moved from either of these extremes
toward the upper or lower critical angle, the trajectory shape
changes smoothly into the closed elliptical form assumed
exactly at the critical angle. A launch angle v lying in the
third or fourth quadrant yields a trajectory that is very
nearly symmetric (with respect to the origin) to one obtained
from a first- or second-quadrant launch angle given by ¢ =
v — 7.

The relative trajectories prevailing for zero drag are rather
accurately described through an approximate solution of Egs.
(11) and (12) with B = 0. If second-and higher-order terms
in the coordinates z; and y; are neglected with respect to Re,
these equations simplify to

173” + 2@/3’ =0 ys" — 2223, - 3y3 =90 (25) TT
This pair of relations readily can be solved to yield, after ap-
plication of the initial conditions expressed in (13-15),

23 = —nRc[(38 — 4 sinB) cose + 2(1 — cosfB) sing]  (26)
ys = nRc[2(1 — cosB) cose + sinf sine] (27)

1t Equations equivalent to these were derived in Ref. 11 for
the no-drag case.
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as the relative coordinates of the launched object correspond-
ing to any launch angle . In this case, the symmetry property
mentioned previously relating to third- and fourth-quadrant
launch angles is exact. Moreover, for ejection angles of 0°
and 180°, Eqs. (26) and (27) describe trajectories that are pre-
cisely prolate cycloids.

The critical ejection angles need to be redetermined for the
present approximate analysis based on (25). This may be
done by applying to (26) and (27) the requisite conditions for
closed trajectories, namely, z; = ys = 0 for any integral
number of satellite revolutions (8 any integral multiple of 2x).
There results ¢. = =+ w/2.1f To obtain the relative trajec-
tory at critical-angle ejection, ¢ in (26) and (27) is set equal
to +=7/2 and the parameter 8 eliminated from the resulting
equations. This gives

(s = 29Rc)? ys*
(29Rc)? (nBc)?
which represents a standard ellipse with center at £=24R¢,0

in the xs,y; coordinate system and whose major axis is twice
the length of its minor axis.

=1 (28)

Drift Rate for Near-Critical Launches

Should the actual ejection angle differ from a critical angle
by a small amount, the object’s relative motion comprises the
same elliptical looping found exactly at eritical ejection, to-
gether with a superimposed “drifting” of the loop center. If
the actual ejection angle is slightly less than ¢., the drift is in
the backward direction, whereas if the angle is greater than
©., it is forward.

When the satellite has completed one revolution and re-
turned to the point of ejection, a time P¢ has elapsed. The
additional time for the ejected body in elliptic orbit to reach
this point if it is not launched at a critical angle is Px — Pe.
For ejection angles close to critical, the speed of the body
during this time is very nearly Ve. Hence, the distance M of
first closest approach (or first miss distance) of the body and
satellite is approximately M = —V¢(Pg — Pc¢), where a
negative value for M signifies that the ejected body passes
to the rear of the satellite at closest approach. With Py =
2w(a3/uw)t’? and P¢ = 2w(Rc3/u)t'?, one can introduce Eq.
(19) to obtain

M = VePe[l — (1 — 9% — 27 cose) —3/2] (29)

Since 7 has been assumed small, one can apply the binomial
expansion and neglect second- and higher-order terms; there
results

M = —3n2VePo[l + (2/n) cose] (30)

If the actual ejection angle ¢ differs from & critical angle
¢, by the angle § measured counterclockwise from the
critical angle (¢ = Z¢. + 8), and if 8 is small compared to
., Eq. (30) is approximated by

M = 395V cPc (31)

Dividing both sides of (31) by P¢ and replacing n by Vz/V¢
leads to a drift rate D of

D = x36Ve (32)

The quantity D measures the separation rate between the
center of the ‘“drifting elliptical loop” and the coordinate
origin. As determined in (32), the rate is averaged over the
first revolution; however, this initial average rate was found
to apply rather accurately for a number of revolutions.

The upper sign in (31) and (32) applies when 8 is measured
from ¢, and the lower sign when it is measured from —g..
For 6 > 0 and measured with respect to the upper critical

1T As corﬁpared with the exact values obtained from (24).
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Fig. 3 Trajectories of objects with B = By = 22.5 ft?/lb
and B = Bgz/10 released with zero ejection speed from a
satellite in circular orbit at 200- and 300-miles altitude

angle, the ejected object passes ahead of the satellite and both
M and D are positive, whereas a positive error angle relative
to the lower critical angle leads to a “pass astern” with M
and D both negative.

General Case: Air Drag Included

An analog computer was used to generate solutions for
Eqgs. (11) and (12) in the more general case that atmospheric
drag force acts on the ejected object (i.e., that B % 0). Plots
of selected typical trajectories obtained in this way are dis-
played in Figs. 3 and 4. On each plot, the forward direction
of orbital motion is to the right, and the zs,y; coordinate sys-
tem is indicated at the location of the ideal satellite. The
satellite orbit also is usually shown. Notation is made at
appropriate points of the approximate number of satellite
revolutions which have occurred since launch; roughly speak-
ing, each “loop” of a trajectory is equivalent to one revolu-
tion. Although the trajectories are relative to an ideal no-drag
satellite, they may also be referred to a real satellite, since the
latter, if it has a typically low drag parameter, will depart
negligibly from the coordinate origin over the time periods of
interest. Trajectories are shown for two values of the ballistic
drag parameter B: Br = 22.5 ft2/Ib, which might apply to a
high-drag balloon structure of the sort typified by the Echo
satellite, and Bg/10 = 2.25 ft?/lb. These high values
(typical satellite instrument capsules show B’s on the range

T
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Fig. 4 Trajectories of objects ejected with a speed of 29

mph from a satellite in circular orbit at 300-miles altitude?

a) B = 0 (equivalent to no-drag condition), ¢ = 0°; b)
B = By = 22.5ft2/lb, ¢ = 0°; ¢) B = Bg/10, ¢ = 90°
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0.01 to 0.1 ft2/1b) were chosen to shorten computer runs and
hence improve aceuracy while displaying trajectory form well.
All trajectories are based on an air-density vs altitude curve
fitted to data of Nicolet!? and Kallman?3; this curve$§$ gives
values of 3.5 X 10~14 and 2.2 X 1072 g/cem3, respectively, at
the two ejection altitudes of 200 and 300 statute miles repre-
sented by Figs. 3 and 4.

Nature of the Trajectories

Without air drag acting, the case of release (i.e., zero ejection
speed) is trivial. With air drag acting, however, the released
object undergoes an added acceleration that is, in general,
directed forward and slightly downward. Thus, after initial
transient behavior, it follows a spiral descent path about the
earth.

Figure 3 depicts the relative trajectories of objects having
drag parameters of Br and Bz/10 released with zero ejection
speed from a satellite in circular orbit at altitudes of 200 and
300 statute miles. Two details of the motion are of especial
interest. The first is an initial hook on the trajectory, here
most obviously displayed on the curve for B = Bg and alti-
tude = 200 miles. An elementary analysis of the behavior
immediately after release confirms one’s “intuitive” feeling
that the object undergoing drag first must move directly
rearward under the effect of the “wind.” Only as orbital
velocity is lost does the object begin to drop in altitude. Ul-
timately, of course, conversion of potential energy into
kinetie form as altitude is reduced gives a forward component
of velocity which carries the object past the no-drag satellite
and thus generates the hook. The second feature shown by
the curves is a damped sinusoidal oscillation of small ampli-
tude which is seen superimposed on the otherwise smooth
trajectories. Here this is displayed most.clearly on the curves
for B = Bjy/10 and altitude = 200 miles and for B = By and
altitude = 300 miles. This oscillation, together with the
hook, probably constitutes a transient response to the “step-
function” shock excitation of the system represented by the
sudden application of drag force. Presumably a similar
transient response follows the cessation of drive force when
a satellite is placed in orbit.

Figure 4 displays three trajectories for objects ejected at an
altitude of 300 miles; in each case the ejection speed is ap-
proximately 29 mph, corresponding to n = #35. Figure 4a
shows the trajectory shape for zero drag and forward ejection
(¢ = 0°), very nearly a prolate epicycloid, as discussed earlier.
Figure 4b shows what happens to that trajectory when air
drag is added. The initial part of the trajectory closely re-
sembles the zero-drag case in Fig. 4a, but as time progresses
the effect of air drag is more and more noticeable in shifting
the curve forward and slightly downward.from its correspond-
ing zero-drag position. Eventually, the overall retrograde
motion ceases at a distance of about 350 to 400 miles behind
the satellite, and the object seems to “pause” and make
several loops in the same region before starting a forward
motion that carries it ahead of and below the satellite. Figure
4¢ shows the trajectory for a near-critical upward shot
(¢ = 90°) with B = Bg/10 at 300-miles altitude. It is re-
called that the near-critical launch without air drag leads to
relative motion describable as an elliptical looping with a
superimposed drift motion of the loop center. Now, with air
drag acting, still another drift motion is superimposed which
accelerates the center of the loop forward and slightly down-
ward and tends to dampen the looping. Not illustrated are
trajectories for ¢ = 270°, which would closely resemble that
for ¢ = 90° except with the initial loop lying forward instead
of behind, and for ¢ = 180°, which would give approxi-

§8 Recent values of air density published by Kallmann-Bijli¢
indicate that the curve lies within the daytime-to-nighttime
density range over the altitudes of interest here.
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mately a prolate hypocycloid ahead. of the satellite combined
with the superimposed forward and slightly downward ac-
celerative tendency due to air drag.

Effect of Parameter Variation

In general, varying the ejection angle ¢ causes a smooth
change in trajectory shape. Thus, for example, as ¢ is in-
creased from zero, the long rearward excursion that occurs
for forward launch (Fig. 4b) gradually shortens until at 90°
the trajectory becomes the moving elliptical loop already
noted (Fig. 4c¢).

Increasing ejection speed Vg enlarges the size of the trajee-
tory loops in reughly direct proportion; i.e.,  doubling Vg
doubles loop size. Increasing Vx tends to increase the time
spent by the object in the satellite’s general vicinity, though
not in direct proportion. For forward. shots displaying the
retrogression illustrated in Fig. 4b, the distance of maximum
retrogression at a specified ejection angle increases almost
proportionately with V. :

Either decreasing B or increasing altitude reduces air-drag
effects and changes trajectory shape in a fashion that is
qualitatively predictable. At 300-miles altitude, for example,
a tenfold decrease in B for a launch at ¢ = 0° lengthens the
retrogression distance shown in Fig. 4b by a factor of about 8.
With B fixed at Bg, decreasing the altitude from 300 to 200
miles (which raises air density slightly more than tenfold)
changes the long rearward excursion of Fig. 4b into a single
partial loop shaped like a reversed comma and terminating
in a fast dive to earth. The latter trajectory shape is typical
of objects having the high drag parameter B. = Br when
ejected at 200-miles altitade, regardless of ejection speed and
angle. Bodies having B = Bg/10 ejected at 200-miles altitude
may undergo a few loops before diving, provided the ejection
direction is well forward and/or the ejection speed is sig-
nificant.

Pause Tendency

It is well known that, in general, the decay of an initially
elliptical orbit proceeds somewhat as follows. At first, the
apogee drops faster than does the perigee, so that orbital ec-
centricity decreases until the orbit is roughly -circular.
Thereafter, the path of the descending body is a spiral that
gradually tightens about the earth. The trajectories discussed
herein elucidate these changes for the case of slight initial
eccentricity. Of particular interest is the pause, illustrated
in Fig. 4b; which can be identified with the transition from
decaying ellipse to spiral trajectory.

Examination of Fig. 4b discloses that, prior to the pause,
both the orbital perigee (bottoms of trajectory loops) and the
apogee (tops of loops) are dropping, but.the apogee is dropping
faster. At the time of pause, the original asymmetry of the
trajectory loops has disappeared and the loops are approxi-
mately elliptical in form, corresponding to those that prevail
initially after a near-critical ejection; moreover, at pause the
loops are centered approximately at the altitude of the satellite
orbit. After pause, the loops again become asymmetrical
and gradually dampen out to give a smooth trajectory repre-
senting the spiral phase of the descent. A simple energy
analysis further clarifies these changes and enables the ap-
proximate time between ejection and pause to be predicted.

At the time of pause, the body is executing elliptical loops of
approximately the same size, shape, and altitude as would have
prevailed immediately after critical-angle ejection. From
this it may be concluded that the body’s total energy at the
time of pause is about the same as it would have been after
critical launch. As noted earlier, critical ejection signifies
that the body’s total energy is unchanged by ejection. Thus,
at pause the body’s total energy is approximately the same as
before launch, a fact that establishes the significance of the
pause. The body receives an additional energy (AE)x from a
forward ejection; thereafter, the body’s total energy is dis-
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sipated by air drag until, at the time of pause, the total energy
has been returned to its pre-ejection value. Hence, the ejec-
tion-to-pause time for a launch in the forward direction is the
time required for air drag to dissipate the additional energy
imparted by ejection.

The change (AE) in the body’s total energy caused by its
impulsive ejection from the satellite is found with the aid of
Eq.(17):

(AE)p = (m/2)V&?([1l + (2/7) cose] (33)

This expression shows the energy change to be zero for ejec-
tion at the critical angles =*=¢. found from (24) and to be
maximum at ¢ = 0°. A satellite body will lose energy to air
resistance at a rate that is the product of drag force and
speed; in terms of the drag parameter B, this rate is mBpV3.
For a not-too-long time ¢, such that air density p and speed V
have not changed much from their initial values, the energy
lost in overcoming drag is approximately

(AE), = mBpV it (34)

where the speed is written as Ve, the satellite orbital speed,
and the air density p is that for the nominal altitude of the
launching satellite. Equating (34) with (33) and solving for ¢
yields, for the approximate ejection-to-pause time,

= (n¥/2BpV¢)[1 + (2/7) cose] (35)

Equation (35) has been checked against many trajectories
and found to agree, in all cases where a distinet pause takes
-place, within the uncertainty with which a pause time can be
measured. When ¢ falls below about 45 to 60 min, a distinet
pause does not take place and the energy-decay time from
Eq. (35) has no apparent significance to the trajectory form
obtained. No pause occurs when the initial energy imparted
by ejection is small (as for ejection angles near 90°) or when
the rate of energy dissipation due to air drag is large (as for
low altitude and/or large B).

It is noteworthy that the ejected body appears never to
achieve a perfectly circular orbit at the time of pause, but
only a near-circular one. Of numerous trajectories displaying
pause for ejection angles from 0° to near 90°, all show at pause
elliptical loops centered approximately on the satellite orbit.
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Thus, although in general an initially elliptical orbit about
the earth decays quite close to a circular form, it seems never
actually to transform into a circular orbit at the transition;
oscillations in altitude of an orbital body persist until the
spiral phase of the descent path clearly is underway.
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